外骨骼机械结构设计及其有限元分析文献综述
2022-07-22 14:36:20
第一个承载功能和积极的自主外骨骼被证实在加州大学伯克利分校,平均速度为1.3米/秒携带34公斤(75磅)有效载荷,在这个项目的过程中,处理了与伯克利下肢外骨骼(BLEEX)相关的四项基本技术,这四项核心技术包括:设计,外骨骼结构,控制方案,一个身体局部区域网络(bLAN)来承载控制算法和一个车载电源单元来驱动执行器、传感器和计算机。本文概述了其中一个控制方案。这里的分析是对系统的灵敏度函数的经典定义的扩展:系统拒绝干扰的能力或系统健壮性的度量。在这里开发的控制算法增加了闭环系统对佩戴者的力量和扭矩的敏感度,而不需要佩戴者进行任何测量。(如。力,位置,或肌电信号)。控制方法对参数变化的鲁棒性较小,因此需要一个相对较好的系统动态模型。描述了测量人变量的传感器和对参数变化缺乏鲁棒性之间的权衡。
The first functional load-carrying and energetically autonomous exoskeleton was demonstrated atU.C. Berkeley, walking at the average speed of 1.3 m/s while carrying a 34 kg (75 lb) payload. Four fundamental technologies associated with the Berkeley Lower Extremity Exoskeleton (BLEEX) were tackled during the course of this project. These four core technologies include: the design of the exoskeleton architecture, control schemes, a body local area network (bLAN) to host the control algorithm and an on-board power unit to power the actuators, sensors and the computers. This article gives an overview of one of the control schemes. The analysis here is an extension of the classical definition of the sensitivity function of a system: the ability of a system to reject disturbances or the measure of system robustness. The control algorithm developed here increases the closed loop system sensitivity to its wearerrsquo;s forces and torques without any measurement from the wearer (such as force, position, or electromyogram signal). The control
method has little robustness to parameter variations and therefore requires a relatively good dynamic model of the system. The tradeoffs between having sensors to measure human variables and the lack of robustness to parameter variation are described.
该项目在加州大学伯克利分校的主要目标是开发与设计和控制能量自主的下肢外骨骼的设计和控制相关的基本技术,这些外骨骼在运动过程中增强人的力量和耐力。第一个场操作下肢外骨骼(通常被称为BLEEX)由两个动力拟人化的腿、一个动力单元和一个类似背包的框架组成,在这个框架中可以安装各种重物。该系统提供飞行员(即穿戴者)在他/她的背上携带大量负载的能力,在任何地形上都能做出最小的努力。BLEEX允许飞行员舒适地蹲下,弯曲,来回摆动,在上升和下降的斜坡上行走,同时也提供了在搬运设备和补给的同时,在障碍物下行走和行走的能力。由于飞行员可以在很长一段时间内携带大量的载荷,而不降低他/她的敏捷性,因此在这类下肢外骨骼的帮助下,物理效果显著增加。为了解决现场稳健性和可靠性的问题,BLEEX的设计是这样的,在停电的情况下(例如燃料耗尽),外骨骼的腿可以很容易的被移除,其余的设备可以像标准的背包一样被携带
The primary objective of this project at U.C. Berkeley is to develop fundamental technologies associated with the design and control of energetically autonomous lower extremity exoskeletons that augment human strength and endurance during locomotion. The first field-operational lower extremity exoskeleton (commonly referred to as BLEEX) is comprised of two powered anthropomorphic legs, a power unit, and a backpack-like frame on which a variety of heavy loads can be mounted. This system provides its pilot (i.e. the wearer) the ability to carry significant loads on his/her back with minimal effort over any type of terrain. BLEEX allows the pilot to comfortably squat, bend, swing from side to side, twist, and walk on ascending and descending slopes, while also offering the ability to step over and under obstructions while carrying equipment and supplies. Because the pilot can carry significant loads for extended periods of time without reducing his/her agility, physical effectiveness increases significantly with the aid of this class of lower extremity exoskeletons. In order to address issues of field robustness and reliability, BLEEX is designed such that, in the case of power loss (e.g. from fuel exhaustion), the exoskeleton legs can be easily removed and the remainder of the device can be carried like a standard backpack.
BLEEX于2004年在加州大学伯克利分校的人类工程和机器人实验室首次亮相。在这个初始模型中,BLEEX提供了34公斤(75磅)的承载力,重量超过了飞行员所支持的重量。BLEEX的独特设计提供了一个符合人体工程学、高度机动性、机械耐用、重量轻、耐久的装备,超越了典型的人类局限。BLEEX有许多潜在的应用程序;它可以提供士兵、救灾人员、野火战士和其他应急人员,能够携带诸如食品、救援设备、急救用品、通讯设备和武器等重型装备,而不需要通常与费力的劳动有关的压力。不同于电影制作人和科幻小说作家所倡导的不切实际的幻想式概念,伯克利的下肢外骨骼是一种实用的、智能的、承载的机器人装置。我们的愿景是,BLEEX将为关键任务设备提供一个通用的、可实现的传输平台。
BLEEX was first unveiled in 2004, at U.C. Berkeleyrsquo;s Human Engineering and Robotics Laboratory . In this initial model, BLEEX offered a carrying capacity of 34 kg (75 lbs), with weight in excess of that allowance being supported by the pilot. BLEEXrsquo;s unique design offers an ergonomic, highly maneuverable, mechanically robust, lightweight, and durable outfit to surpass typical human limitations. BLEEX has numerous potential applications; it can provide soldiers, disaster relief workers, wildfire fighters, and other emergency personnel the ability to carry heavy loads such as food, rescue equipment, first-aid supplies, communications gear, and weaponry, without the strain typically associated with demanding labor. Unlike unrealistic fantasy-type concepts fueled by movie-makers and science-fiction writers, the lower extremity exoskeleton conceived at Berkeley is a practical, intelligent, load-carrying robotic device. It is our vision that BLEEX will provide a versatile and realizable transport platform for mission-critical equipment.
下肢外骨骼的有效性来自于飞行员提供的人类智慧的综合效益和外骨骼提供的力量优势;换句话说,人类为外骨骼提供了一个智能控制系统,而外骨骼执行器提供了行走所需的大部分力量。控制算法确保外骨骼与飞行员协调一致,最小的相互作用力。控制方案不需要来自飞行员或人机界面的直接测量(例如,在两者之间没有力传感器);相反,控制器估计,根据外骨骼的测量,如何移动,使飞行员感到非常小的力量。这一控制方案,从未被应用于任何机器人系统,是一种有效的运动方式,当飞行员与外骨骼的接触位置未知且不可预测时(即外骨骼和飞行员在不同地方的接触)。这种控制方法不同于上肢外骨骼、和触觉系统的符合性控制方法,因为它不需要佩戴者和外骨骼之间的力传感器。
课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。