裂解炉套管换热器热应力分析设计文献综述
2021-09-28 20:02:56
毕业论文课题相关文献综述
文 献 综 述
换热器热应力分析设计综述
0 引言
换热器是传热工程必不可少的设备,几乎一切工业领域都要使用。化工,冶金,动力,交递,航空与航天部门应用尤为广泛。在底部有热源作用的散热片,主要通过传导与对流进行热交换。为保证散热片的散热性能达到设计的要求,从而避免电子产品因过热而造成损坏,就需要对其进行热分析,计算在实际工况下的温度分布,校核其散热性能。因此,对换热器进行热应力耦合分析具有十分重要意义。传统方法的热分析其温度变化必须是非常的缓慢,而且在升降温过程中的不易控制,难以正确校核其散热性能。随着计算机技术的发展,使得有限元法有着突飞猛进的进展。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。ANSYS的热分析基于能量守恒原理的热平衡方程,正确模拟散热片的工况,通过有限元法计算各节点的温度分布,并由此导出其他热物理参数,为散热片的设计选材提供合理的参数,使产品的研发更加快速、高效和经济。
换热器在运行的时候,可能会出现失效的情况。换热器在操作时,由于冷、热流体温度不同,使壳体和管壁的温度互有差异。这种差异使壳体和管子的热膨胀不同,虽然换热器本身采用膨胀节式补偿,但当两者温差较大时可能将管子扭弯,或使管子从花板上拉松,直至管束损坏断裂[1]。
解决热应力产生的换热器失效一般是采用ansys热分析。热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等[2]。
当一个结构加热或冷却时,会发生膨胀或收缩。如果结构各部分之间膨胀收缩程度不同,和结构的膨胀、收缩受到限制,就会产生热应力。
ANSYS 提供三种进行热应力分析的方法:
在结构应力分析中直接定义节点的温度。如果所以节点的温度已知,则可以通过命令直接定义节点温度。节点温度在应力分析中作为体载荷,而不是节点自由度
间接法:首先进行热分析,然后将求得的节点温度作为体载荷施加在结构应力分析中。
课题毕业论文、开题报告、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。